

Covering the tightening emission standards in Russia with reliable customized engineering solutions and high local manufacturing content

Power-Gen Russia 2016, October 25-27, Moscow, Expocentre

Speaker: Dr. Axel Thielmann (Department Manager Proposals Flue Gas Cleaning)

Co-Authors: Lutz Brandau (Head of Marketing & Proposals) Dr. Stefan Binkowski (Department Manager Flue Gas Cleaning Process)

steinmüller engineering

Content

BAT: Best **A**vailable **T**echniques **BREF: B**AT **REF**erence Document

steinmüller

BREF 2017: Emission Limit Values (ELVs) under discussion for existing Large Combustion Planst (LCPs) ≥ 300 MWth

	Current IED	BAT Yearly ¹	BAT Daily ¹	BREF 2017 ²	Russia
NOx [mg/Nm³]	200	65-175	85-220	150	470
PM [mg/Nm³]	20	2-10	2-10	10	150
SO ₂ [mg/Nm³]	200	10-180	25-220	130	1200
HF, HCl [mg/Nm ³]		1-5			
Hg [µg/Nm³]		1-3 (hard coal) 1-7 (lignite)			

Rolf Becks, Umweltbundesamt (German "Environmental Protection Agency"), during the 11th "VGB-Fachkonferenz REA-, SCR- und Entstaubungsanlagen in Großkraftwerken" 25./26. November 2015
expected new ELVs in the European Union

Content

De-NOx – Steinmüller Product Range

Primary Measures:

- Replacement or modifications of burners to Low-NOx-Burners
- Installation of Over-Fire-Air ports
- Optimization of air supply / air ratio
- Adaption of coal mills

De-NOx – Secondary Technologies

SCR:

Requirement (+: positive; -: negative for owner)	SCR	SNCR
Removal efficiency	++	-
Pressure drop	-	++
CAPEX	-	+
Acceptable flue gas temperature range	-	-
Maintenance requirements	-	+

ESP:

Requirement (+: positive; -: negative for owner)	ESP	FF
Removal efficiency	+	++
Acceptable dust size distribution	-	++
Pressure drop	++	-
CAPEX		
Acceptable flue gas temperature range	+	-
Maintenance requirements	+	_

FF:

steinmüller engineering

Requirement (+: positive; -: negative for owner)	Wet FGD	Dry FGD
Removal efficiency	++	+
Pressure drop	-	
CAPEX		
Maintenance requirements	+	-

IHI GROUP

steinmüller

Content

Reference project key data

- Location Wesseling (near to Cologne) / Germany
- Refinery with fuel oil fired Boiler (unit 6)
- Boiler capacity
- Flue gas volume flow
- Flue gas temperature (downstream of air preheater)
- NOx Emission after boiler
- Firing of HFO / Cracker residue (HHVR) / off-gas

200 MW_{therm.} 192.000 Nm³_{wet}/h 325 °C

570 mg/Nm³

GROUP

Shell Wesseling requirements:

- NOx less than 140 mg/Nm³ @ 3 % O₂,dry
- NH_3 slip less than 1 mg/Nm³ @ 3 % O₂,dry

Steinmüller scope:

- Engineering and Supply of new low NOx burners
- Engineering and Supply of SCR DeNOx (consortium with Balcke Dürr for erection)
- Engineering of boiler heating surface modifications (as sub-supplier to Balcke Dürr)

DeNOx – Shell Wesseling: Implementation

Technical Data:

Steam data	200 t/h
Max. operation pressure	132,4 bar
Test pressure (1.2 x 132.4 bar)	159 bar
Superheated steam temperature	525 °C
Year of construction	1978

Heating surfaces:

ECO I:	564 m²
ECO II:	542 m²
Natural circulation system:	1243 m²
Superheater sling tube	173 m²
Pre-Superheater 1	1187 m²
Pre-Superheater 2	522 m²
Final Superheater	249 m²
Total:	4480 m²

IHI GROUP

steinmüller

engineering

- Integrated design (modification of heating surface and temperature window for SCR) for all load cases
- LowNOx burner design + SCR allows:
 - Cost benefit analysis of primary and secondary measures

 \rightarrow Lower investment and operational costs

• Reduction of interfaces

 \rightarrow Easier contracting and handling of guarantees

- Construction and erection in existing plant with limited space
- Burners for special applications (HFO, HHVR, off-gas)

De-dusting – Example: CET Govora

- Power plant CET Govora, 7 Units of 380 MWth
 - Flue gas volume flow:
 - Dust load (raw gas):

steinmüller

engineering

- Clean gas before retrofit:
- Clean gas after retrofit:
- Pressure loss improvement:

 $1.024.000 \text{ m}^3/\text{h}$ 70.000 mg/Nm³ @ 6% O₂ > 200 mg/Nm³ @ 6% O₂ < 50 mg/Nm³ @ 6% O₂ - 30 Pa (0,3 mbar)

De-dusting – Example: CET Govora

- Target: Revamp of 2 existing ESP casings
 - Including Engineering and Supply of steel components
 - Reduce dust emission from 280 mg/Nm³ to below 50 mg/Nm³
 - Maintain original footprint
 - Reduction in pressure loss

steinmüller

engineering

De-dusting – Example: CET Govora - Implementation

steinmüller

- Reduction of dust emissions < 10 mg/Nm³
- Upgrade possible whilst maintaining original footprint and weight (SE low weight ESP-roof)
- Reduction in pressure loss (adapted ESP lane width & ESP hoods)
- Power savings (modern high voltage aggregates & control)
- Robust design

steinmüller engineering

steinmüller

engineering

Flue gas desulphurisation (FGD) system for unit no. 4 (150 MW_{el} + hot water boiler of 103,2 Gcal/h)

Client: Termoelectrica SA; Petrosani/ Romania General Contrator: LAB CNIM; Stuttgart/ Germany Sub-Supplier: Steinmüller Engineering ; Gummersbach/ Germany

IHI GROUP

steinmüller

engineering

GROUP

scope:	LAB	SE
Project lead	Х	
Process design		Х
Basic design	0	0
Detail design	Х	
Technical specification		Х
Sub supplier evaluation		Х
Purchase of main		Х
component		
Detail engineering	0	0
Construction	0	0
Commissioning	0	0

steinmüller engineering

IHI GROUP

De-SOx Example – Paroseni: Key components

Content

scope:	LAB	SE
Project lead	Х	
Process design		Х
Basic design	0	0
Detail design	Х	
Technical specification		Х
Sub supplier evaluation		Х
Purchase of main component		Х
Detail engineering	0	0
Construction	0	0
Commissioning	0	0

Content

Summary

Our Solutions for Air Pollution Control Upgrades

- Meeting of emission limit requirements in answer to Legislation
- Delivery of key components (guarantees!)
- Balancing (CAPEX & OPEX) between primary and secondary APC upgrades
- Integrated plant solutions
- High level of scope localization
 - Quality Inspection Protocols, Manufacturing supervision
 - Supervision of Erection & Commissioning
- Know-How transfer

We will find the best solution for your plant together !

Thank you for your attention

steinmüller

- IHI GROUP